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Metabolism and Excretion of 2-Ethoxyethanol

in the Adult Male Rat

by Kenneth L. Cheever,* Harry B. Plotnick,*
Donald E. Richards* and Walter W. Weigel*

The routes of C excretion following the administration of a single oral 230 mg/kg body weight dose of
2-ethoxyethanol [ethanol-1,2-"C] or 2-ethoxyethanol [ethoxy-1-1*C] to male Sprague-Dawley rats were
investigated. Elimination of the C by the urinary route accounted for 76 to 80% of the dose within 96 hr.
The main pathway of biotransformation is oxidation to the corresponding acid, with some subsequent
conjugation of the acid metabolite with glycine. The major metabolites, ethoxyacetic acid and N-ethoxy-
acety] glycine, representing 73 to 76% of the administered dose, were eliminated in the urine, The major
difference in the metabolic profiles of the two radiochemicals was in the rate and amount of *CQ, expired
via the lung. Of the administered MC, 11.7% of the ethoxy-labeled and 4.6% of the ethanol-labeled
compounds were eliminated as CQ,. The hiological half-time was 9.9 = 1.5 hr for the ethoxy-labeled
compound and 12.5 £ 1.9 hr for the ethanol iabel. After administration of the ethanol-labeled compound,
the only radiolabeled component found in the rat testes was identified as ethoxyacetic acid. Results of this

study suggest that the reported testicular effects in the rat may be a result of tissue levels of ethoxyacetic

acid.

Introduction

2-Ethoxyethanol is the highest volume ethylene oxide-
based glycol ether produced in the United States (7).
The chemical has been of commercial importance for
more than 50 years, being used primarily as a solvent
and as an intermediate in the production of 2-ethoxyethyl
acetate,

No chronic health effects resulting from industrial
use of Z-ethoxyethanol have been reported. However,
effects of 2-ethoxyethanol in animals include tubular
degeneration in the kidney (2), erythrocyte hemolysis
(3,4), and reduced leukoeyte count (5). More recently,
Nelson et al. (6) showed neurochemical and behavioral
changes in the offspring of female rats exposed to
2-ethoxyethanol.

Although no adverse reproductive effects resulting
from human exposure to 2-ethoxyethanol have been
reported, testicular damage in rats exposed to the
chemical was described as early as 1942. In that year,
Morris et al. (7) showed that rats developed tubular
atrophy and edema of the testes after the oral admini-
stration of 2-ethoxyethanol. Similar effects have also
been noted in mice (5,8). Miller and his co-workers have
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demonstrated that 2-methoxyethanol, a closely related
glycol ether, causes degeneration of the germinal epithe-
lium of the testes of rats (9). Subsequently, Miller et al,
(10) showed that a similar condition resulted from the
administration of methoxyacetic acid, a metabolite of
2-methoxyethanol (11). The metabolism of two other
ethylene glycol monoalkyl ethers, n-butoxyethanol
(12,13) and isopropoxyethanol (Z4), has been reported
to proceed by oxidation to the corresponding carboxylic
acid. Conjugation of isopropoxyethanol (74) and 2-
ethoxyethanol (15} metabolites with glyeine has been
reported. In a previous study of the biotransformation
of 2-ethoxyethanol in the rat, Jénsson et al. (15)
identified ethoxyacetic acid and N-ethoxyacetyl glycine
as urinary metabolites. These investigators, however,
recovered only an estimated 30% of the administered dose.

The objectives of this study were to supplement the
earlier work on the biotransformation of 2-ethoxy-
ethanol in the rat by determining the fate of the
compound following oral administration and to identify
the chemical species associated with testicular damage.

Methods

Chemicals and Dosing Solutions

The test compound, 2-ethoxyethanol (99%), was pur-
chased from Aldrich Chemical Company, Milwaukee,
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WI. Both 2-ethoxyethanol [ethanol-1,2-*C] and 2-
ethoxyethanol [ethoxy-1-"*C] with specific activities of
3.47 mCimmole and 2.69 mCi/mmole, respectively,
were purchased from New England Nuclear, Boston,
MA. Subsequent purification and analysis of these
radiochemicals by high-performance liquid chroma-
tography (HPLC) resulted in a radiochemical purity of
99.6% for each compound. The reference compound,
ethoxyacetic acid (98%), was purchased from Aldrich
Chemical Company. Ethoxyacetyl chloride (b.p. 124°C,
uncorr.) was synthesized in accordance with the general
method of Freed (76). N-Ethoxyacetyl glycine ethyl
ester (b.p. 107.5°C/0.01 mm, uncorr.) was synthesized
by reaction of ethoxyacetyl chloride with glyeine ethyl
ester using the method of Wolf and Niemann (17).

Treatment solutions were Erepared by dissolving
2-ethoxyethanol [ethanol-1,2-'*C] or 2-ethoxyethanol
[ethoxy-1-1*C] along with ethoxyethanol in distilled
water to yield a concentration of 46 mg/ml. with
specific activities of 0.123 pCi/‘mg and 0.117 wCi/mg,
respectively.

Animals, Doses and Collections

Male Sprague-Dawley [Crl:CD (SD)BR outbred],
cesarean-derived rats weighing 51 to 75 g, were ob-
tained from Charles River Breeding Laboratories, Inc.
(Wilmington, MA) and maintained on NIH-07 rat and
mouse diet (Ziegler Brothers, Inc., Gardners, PA) and
tap water ad libifum. After a 2-week quarantine
period, 70 rats, weighing 190 to 210 g, were used in a
preliminary study to determine the acute 14-day oral
LDy of 2-ethoxyethanol.

The dose range for the toxicity study was established
by treating groups of two rats with various amounts of
undiluted 2-ethoxyethanol. Upon initiation of the
toxicity experiment, the rats were starved overnight,
weighed (192.6 = 12.3), and randomly assigned to six
groups of ten rats each. Doses of 250, 500, 1000, 2000,
4000, and 8000 mg/kg body weight were administered,
by gavage, to all rats within the corresponding dosage
groups. These animals were observed for mortality
during the subsequent 14-day period. The LDg, value
was calculated from the mortality in the several groups
by the probit method of Finney (18).

In subsequent excretion and metabolism studies,
animals in the same weight range were transferred to
individual Roth-type glass metabolism cages. Lahora-
tory air, dried and freed of earbon dioxide, organics, and
particulates, was passed through the metabolic cham-
bers at a flow rate of 0.5 L/min. Except for an 18-hr
starvation period immediately prior to dosing, the
animals had free access to food sticks formed by baking
ground NIH-07 diet with a raw egg binder. Distilled
water was available throughout the experimental period.
Following acclimatization to the cages for 3 days prior to
dosing, animals were given a single oral 230 mg/kg body
weight dose of either 2-ethoxyethanol [ethanol-1,2-14C]
or 2-ethoxyethanol [ethoxy-1-'*C]. This dose corres-

ponds to 0.1 of the LDs;; value determined in the
preliminary experiment. Air exiting each chamber was
passed first through a sorbent sampling tube consisting
of a 400-mg front section and a 200-mg back section of
activated charcoal (SKC Inc., Eighty Four, PA) for
collection of organic material appearing in the expired
air and then bubbled through a tower containing
ethanolamine to trap expired carbon dioxide. Sampling
tubes and ethanolamine solution in the towers were
changed periodically as required to avoid loss of
radioactivity. Urine was collected when voided for the
first 30 hr, and at 48, 72, and 96 hr after doging. Urine
was diluted to 10 or 25 mL and stored at -20°C until time
of analysis. Feces were collected at 24-hr intervals and
also stored at -20°C. At the end of the 96-hr experimen-
tal period, the animals were killed by asphyxiation with
CO,. Residual radioactivity in the metabolism cages was
collected by washing first with water and then with
methanol.

In a separate experiment, six animals, weighing 190
to 210 g, were starved for an 18-hr period and given
a single oral 230 mg/kg body weight dose of 2-
ethoxyethanol [ethanol-1,2-1'C], Animals were killed
by decapitation and exsanguination at 1 hr intervals
after dosing, Testes were excised and stored at -20°C
until time of analysis.

Scintillation Spectrometry

Urine samples were prepared for “C analysis by
dissolving duplicate 0.1-mL aliquots in 3 mL of metha-
nol and 10 mlL of scintillator consisting of 5.5 g
Permablend I (Packard Instrument Co., Downers Grove,
IL) per liter of toluene. Duplicate 1-mL aliquots of
ethanolamine selution were prepared for counting in the
same scintillator. Feces samples were ground frozen
with microcrystalline ceilulose (E. Merck, Darmstadt,
FR.G.) using a Model Al{Q analytical mill (Tekmar
Company, Cincinnati, OH). Five Portions of each milled
feces sample were prepared for 1C analysis by combus-
tion in a Tri-Carb Model B306 sample oxidizer (Packard
Instrument Co.). Front and back sections of charcoal
from sample collection tubes were combusted sepa-
rately in the sample oxidizer. Carcasses were solubilized
in 1 N NaOH prepared in 70% (v/v) aqueous methanol,
and five portions of the digest were combusted. Cage
washings were homogenized using a Polytron Model
PCU-1 homogenizer equipped with a PC-10 probe (Kine-
matica Gmbh, Luzern, Switzerland), and five 0.5-mL
aliquots were combusted. Carbon-14 was determined
using a Model LS8100 liquid scintillation spectrometer
(Beckman Instruments, Inc., Fullerton, CA), and data
were corrected for background and quenching. Counting
efficiency was caleulated using an external standard.

Separation and Isolation of Metabolites

Urinary metabolites were separated by HPLC with a
50 em x 9 mm internal diameter stainless steel column
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packed with Partisil-10 OD-2 (Whatman, Ine., Clifton,
NJ). A model ALC/GPC 201 high-performance liguid
chromatograph equipped with two Model 6000A pumps
and a Model U6K injector (Waters Associates, Inc.,
Milford, MA) was used throughout the study. Solvent
gradient conditions were controlled by a Model 720
system controller (Waters Assoeiates, Inc.). Individual
urine samples were thawed, adjusted to pH 3 with
glacial acetic acid, and filtered through a 0.45-pm
pore size disposable filter assembly (Acrodisk, Gelman
Sciences, Ann Arbor, MI) prior to HPLC analysis. A
portion of each of these samples was initially chromato-
graphed for 20 min isccratically with 1% acetic acid
in water. Metabolites were then eluted by using a
methanol:1% acetic acid solvent gystem, linearly pro-
grammed from 15% to 80% methanol in 40 min, The
solvent flow rate was maintained at 1 mL/min during
the 60-min period of analysis. Radioactive metabolites
were detected and quantified by using an in-line Tri-
Carb RAM 7500 radioactivity monitor equipped with a
quartz flow cell packed with a solid scintillator (Packard
Instrument Co.).

Another portion of urine was acidified to pH 1 with 6
N HCI and heated at 90°C for 4 hr under nitrogen to
hydrolyze possible conjugates. The urine was then
adjusted to pH 3 with 6 N NaOH, filtered, and analyzed
by HFLC.

Urinary metabolites were collected, pooled by reten-
tion time, and lyophilized using a Model 75035 freeze
dryer {Labconco Corporation, Kansas City, MO). Resi-
dues were subsequently taken up in 1 mL of methanal
for identification of metabolites by chromatographic
techniques.

Testes were also examined for the presence of radioac-
tive compounds by HPLC. Rat testes were thawed,
minced, and homogenized in three volumes of distilled
water using a Polytron Model PCU-1 homogenizer
equipped with a PC-10 probe. Homopenates were
lyophilized, and the residues were extracted three times
with 1-mL volumes of methanol. These extracts were
combined and concentrated to 1 mL for HPLC analysis
using the same chromatographic conditions described
previously. The single radioactive fraction was collected
for further characterization by gas-liquid chromatogra-
phy (GLC) and thin-layer chromatography (TLC).

Characterization of Metabolites

Retention times of metabolites isolated from the
urine and testes and of reference compounds were
determined on two different gas chromatographic
columns. Initially the metabolites were individually
chromatographed on a 183 em % 2 mm glass column
packed with 10% SP-2100 on 100/120 mesh Supeleoport
{Supelco, Inc., Bellefonte, PA) installed in a Model
3920B gas chromatograph (Perkin-Elmer Corp.,
Norwalk, CT). The oven temperature was programmed
from 50 to 250°C at 2°C/min, with a nitrogen carrier
gas flow rate of 30 em®min. Metabolites found to be

nonvolatile were esterified by using the general method
of Thenot et al. (19} and rechromatographed. Metabo-
lites were also chromatographed on a 183 em X 2 mm
glass eolumn packed with 10% SP-1200/1% H,PO, on
80/100 mesh Chromosorb W AW (Supelco, Inc.), a
column useful for the separation of organic acids. The
oven temperature was programmed from 70 to 200°C at
2°C/min. A nitrogen carrier gas flow rate of 30 cm*min
was used.

Metabolites were further characterized by TLC E,
values. Radioactive metabolites were eo-chromato-
graphed with reference compounds on silica-gel
precoated glass plates (E. Merck, 60 F 254, 0.25 mm
layer thickness). Chromatograms were developed with
ethyl acetate:acetic acid:water (90:5:5, v/v). Areas cor-
responding to radicactive metabolites were located by
using a Model 7230 radiochromatograph x-y scanner
(Packard Instrument Co.) with a collimator opening of
1.5 mm® and a helium:isobutane (99.05:0.95, v/v) count-
ing gas flow rate of 5 em*/min. Reference compounds
were located by observing the quenching of fluorescence
activated by 254 nm radiation and by color reactions
with either iodine vapor or 0.05% Bromocresol Green
reagent (1. Merck).

The two major urinary metabolites or their ethyl
esters were further characterized by determination of
boiling points at atmospheric or reduced pressure. In
addition, mass spectra of the major urinary metabolite
and the corresponding reference compeund were ob-
tained by using a Model 5982A mass spectrometer
(Hewlett-Packard Co., Palo Alto, CA) operating with an
electron energy of 70 eV. A model 5711 gas chroma-
tograph (Hewlett-Packard Co., Avondale, PA), fitted
with a 91 em X 2 mm glass column packed with 3%
SP-2300 on 100/120-mesh Supelcoport (Supelco, Ine.),
was interfaced to the mass spectrometer through a
glass-jet separator. The oven temperature was pro-
grammed from 100 to 150°C at 2°C/min. A helium
carrier gas flow rate of 30 em®/min was used. All mass
spectral data were aequired and processed using a
Model 5834A data system (Hewlett-Packard Co.).

Statistical Analysis

Statistical differences between groups were deter-
mined using Student’s t-test. The biological half-times
of the two radioisotopes were calculated by linear
regression analysis.

Results

Determination of Acute Toxicity

The single-dose oral LDjq for 2-ethoxyethanol deter-
mined in 190 to 210 g male Sprague-Dawley rats, based
upon 14-day mortality data, was determined to be 2300
mgrkg body weight.
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Figure 2. Cumulative 96-hr urinary '4C excretion after oral admini-

stration of 230 mg/kg doses of radiclabeled 2-ethoxyethanol to the
adult male rat (mean = SE).

Excretion of Radioactivity

The principal route of excretion of the administered
radioactivity was via the kidneys, Rats treated with the
ethanol-labeled material excreted 80.6% of the dose in
the 96-hr collection period. The corresponding value for
rats treated with the ethoxy-labeled compound was
75.5% of the dose. When the amounts of C in the cage
washes — considered to be residual urine—were added,

Cumulative 30-hr *CO, excretion after oral administration of 230 mg/kg doses of radiolabeled 2-ethoxyethanol to the adult male

Table 1. Total 96-hr recovery of MC.

% of administered 2-ethoxyethanol

Sample [Ethanol-1,27"C]" [Ethoxy-1""*CI*
Urine 80.6 = 2.2 75.6 + 2.1
CO, 4.6 = 0.5° 11.7 = 1.0¢7
Volatile organics 0.2 £ 0.0° 0.4 = 0.0°
Feces 45+ 1.2 2707
Carcass 4.6 = 0.2 1.8 =02
Cage Wash 48 > 1.9 2.2+ 0.8
Total recovery 99.3 = 6.0 944 = 4.8

®Animals received 230 mg/kg doses of 2-ethoxyethanol [ethanol-
1,274C] (specific aetivity = 0.123 pCi‘mg; mean = SE, n = 4)

PAnimals received 230 mg/kg doses of 2-ethoxyethanol [ethoxy-
1] (specific activity = 0.117 uCi/mg; mean = SE, n = 5).

¢30-hr value.

“Statistically different from corresponding value by Student’s ¢
test, p < 0.01.

the total urinary recoveries became 85.4% and 77.8% of
the dose for the ethanol-labeled and ethoxy-labeled
compotindg, respectively. The elimination of radioactiv-
ity in the urine was rapid with 71.6% of the ethanol-
label and 69.9% of the ethoxy-label excreted over the
first 24 hr. Only an additional 6 to 9% of the adminis-
tered radioactivity was excreted in the urine during the
ensuing 72 hours (Fig. 1). Administration of the ethoxy-
labeled compound resulted in the exeretion of 11.7% of
the dose as respiratory *CQ,. In contrast, the ethanol-
labeled compound gave rise to only 4.6% of the dose as
1C0,. After the first 10 hr, the output of labeled CO,
rapidly declined. By 30 hr, the expiration of **CO, had
virtually eceased (Fig. 2), and sampling was discon-
tinued at that time. Only trace amounts of volatile
organics were found in the breath of rats treated
with either radiolabeled compound. Relatively minor
amounts of "*C were excreted in the feces or remained
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in the carcass at 96 hr after treatment with either
radiochemical. The biological half-times for the ethanol-
and ethoxy-labeled compounds were 12.5 + 1.9 hr and
9.9 = 1.5 hr, respectively. Total recovery of *C was
99.3% from rats dosed with 2-ethoxyethanol [ethanol-
1,2-1*C] and 94.4% from those dosed with 2-ethoxy-
ethanol [ethoxy-1-**C]. These results are summarized
in Table 1.

Metabolism of 2-Ethoxyethanol

The urinary metabolites excreted by rats following
administration of either radiochemical were separated

by HPLC and quantified by scintillation spectrometry.
The relative amounts of each metabolite were caleulated
by summation of these analytical results for each urine
sample collected over the 96-hr period (Table 2). Of the
12 distinet radiolabeled components present in the urine
of rats treated with either radiochemical, only two
minor components were found not to he common
metabolites of both. Urinary metabolite E, represent-
ing 1.4% of the administered C, was specific for the
ethanol-labeled compound, whereas metabolite F, repre-
senting 1.5%, appeared only in the urine of rats treated
with the ethoxy-labeled compound.

The two major metabolites together accounted for 73

Table 2. 96-Hr urinary metabolic profile,

Metabolite HPLC retention time(Rt), min [Ethanol-1,271CJ® [Ethoxy-1"4C]°
A 25.8 < (.01 < 0.01
B 274 0.21 £ 0.02 0.01 = 0.05
C 23.8 1.76 = 0.53 0.09 = (.01
D 42.6 0.32 = 0.09 0,18 = 0.03
E 45.6 1.44 = 0.41 —
F 47.4 — 1.51 = 0.23
G 50.2 32,13 + 2.23 28.04 = 1.32
H 52.5 43.44 = 2.09 44 88 * 2.62
I 53.4 0.256 = 0.05 0,16 = 0.05
J 54.0 0.42 = 0.09 0.27 £ (113
K 56.0 0,18 + 0.03 0.07 £ 0.03
L 58.4 0.10 + 0.02 0.02 = 0.01
Total recovery 80.25 = 5.56 75.32 + 4.48
*Animals received 230 mg/kg doses of 2-ethoxyethanol-1,2C] (specifie activity = 0.123 pCi/mg; mean = SE, n = 4).
>Animals received 230 mg'kg doses of 2-ethoxyethanol [ethoxy-1-14C] (specific activity = 0.117 wCi/mg; mean = SE, # = 5).
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Figure 3. Comparison of mass spectra of ethoxyacetic acid and metabolite isolated from rat urine after oral administration of 230 mg/kg doses
of 2-ethoxyethanol.
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Table 3. Comparison of urinary metabolites of 2-ethoxyethanol with reference compounds.

Compound Retention time A, min® Retentien time B, min® R Boiling point, °C
Ethoxyacetic acid 4.9 23.2 0.33 206
Metabolite H 4.7 23.3 0.32 207

Testicular metabolite 4.5 23.3 0.32 —
N-Ethoxyacetyl glycine, ethyl ester 22.6 47.1 0.25 107.5/0.01 mm
Metabolite G, ethyl ester 23.0 45.3 0.25 107.5/0.G1 mm
2-Ethoxyethanol 5.3 25 0.54 135.1

*GLC retention time (min) using a 183 em x 2 mm i.d. glass column packed with 10% SP-2100 on 100/120-mesh Supelcoport. Oven temp-
erature programmed from 50° to 250° at 2°C/min with 30 ecm®*min nitrogen carrier gas.

SGLC retention time using a 183 ecm x 2 mm i.d. glass column packed with 10% SP-1200/1% H,PO, on 80/100-mesh Supelcoport. Oven temp-
erature programmed from T0° to 200°C at 2°C/min with 30 em®min nitrogen carrier gas.

“TLC R, value of compounds spotted on E. Merck Silica gel F 60 precoated plates and run 10 em with ethy] acetate:acetic acid:water (95:5:5)

mobile phase.

to 76% of the administered radioactive dose. The more
abundant of these, metaholite H, accounted for 43.4% of
the administered ethanol-labeled ecompound and 44.9%
of the ethoxy-labeled compound. The second most
abundant, metabolite G, amounted to 32.1% of the
administered ethanol-labeled compound and 28.0% for
the ethoxy-labeled eompound. The remaining eight
radioactive components accounted for less than 3% of
the administered dose. Analysis by HPLC of urine
subjected to acid hydrolysis showed a disappearance of
metabolite G with a concomitant increase in metabolite
H, indicating the presence of a possible glycine
conjugate.

Urinary metabolite H, isolated by HPLC, was fur-
ther purified by fractional distillation at atmospheric
pressure to yield a colorless liguid, boiling at 207°C.
This metabolite was subsequently identifled as
ethoxyacetic acid by comparison of boiling points, GLC
retention times on two different columns, and TLC R,
values with those of the authentic reference compound.
The identification of this compound was confirmed by
mass spectral analysis (Fig. 3).

Urinary metabolite G did not elute from the gas
chromatographic column under the conditions used.
Subsequently, the ethyl ester of this metabolite was
formed and isolated by fractional distillation at reduced
pressure to yield a colorless liquid boiling at 107.5°CA0.01
mm Hg. This metabolite was further identified as
N-ethoxyacetyl glycine by comparison of boiling points,
GLC retention times on two different columns, and TLC
Ry values of its ethyl ester with those of the authentic
compound (Table 3).

Minor metabolites in the urine, accounting for only 3
to 5% of the administered '*C, were not identified.
However, their failure to respond to conditions of
hydrolysis or esterifiction indicates that these metabo-
lites were not amino acid or glucuronic acid conjugates.

Identification of Metabolites Isolated
from Testes

Analysis of extracts of rat testes by HPLC indicated
that the amount of *C in the testes peaked at 2 hr after
administration of the ethanol-labeled compound and

Table 4. Testicular ''C levels after administration
of 2-ethoxyethanol [ethanol-1,271C].

% of dose

G.19
.31
0.19%
0.16
0.11
.06

*Animals received 230 mg/kg oral doses of Z-ethoxyethanol
fethanol-1,27C] (specific activity = 0.117 pCi/mg). Testes of each
animal were homogenized in three volumes of distilled water, and
lyophilized. Residues were extracted three times with 1-mL portions
of methanol and ehromatographed by HPLC.

Time after dosing, hr*

Sh O e O D

declined rapidly over the ensuing 4-hr period (Table 4).
The single radicactive HPLC peak was subsequently
identified as ethoxyacetic acid by comparison of GLC
retention times on two different columns, TLC R,
values and HPLC retention times with those of the
authentic compound.

Discussion

The results of this study indicate that metabolism of
2-ethoxyethanol in the rat proceeds primarily through
oxidation to the corresponding acid, with some subse-
quent conjugation of the acid metabolite with glyeine.
These results confirm the work of Jénsson et al. (14) and
are consistent with the biotransformation pathways
reported for other ethylene glyeol monoalkyl ethers
{11-14). In the present study, the principal difference
observed in the metabolic profiles of the two different
labeled 2-ethoxyethanols was in the higher amount of
expired "*CQ, from the ethoxy-labeled compound with a
concomitant shortening of the biological half-time. Af-
ter administration of radiolabeled 2-ethoxyethanol, a
single metabolite, ethoxyacetic acid, was identified in
the rat testes.

Although the metabolism of 2-ethoxyethanol hag
been studied to some extent, information pertaining to -
its quantitative metabolism and excretion has not been
previously reported. After incubation of 2-ethoxyethanoi
with Acetobacter suboxidans, Hrotmatka and Polesofsky
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Table 5. Metabolism of 2-ethoxyethanol.

Metabolite reported Species Reference
Ethoxyacetic acid Acetobacter suboridans (20)
Corynebacter sp. @n
Alcaligenes sp.
Rat (15}
N-Ethoxyacetyl glycine Rat (15}

(20) reported finding ethoxyacetic acid and suggested
that this metabolite would be more toxic than the
parent compound. Using a similar bacterial system,
Harada and Nagashima {27) noted that 2-ethoxyethanol
was utilized as the sole carbon source and postulated
that, following the initial conversion to ethoxyacetic
acid, the ether bond was cleaved. Jonsson et al. (15)
reported finding two metabolites, ethoxyacetic acid and
N-ethoxyacetyl glyeine, in the urine of rats after oral
administration of 2-ethoxyethanol. These investigators,
using unlabeled 2-ethoxyethanol, estimated that the
combined excretion of the two metabolites amounted to
approximately 30% (mole/mole) of the given dose. The
results of the studies are summarized in Table 5.

The metabolism of 2-ethoxyethanol appears to be
complex as indicated by the number of radiclabeled
urinary components found by HPLC. The major
metabolites, ethoxyacetic acid and N-ethoxyacetyl
glycine, account for 73 to 76% of the administered
radioactivity. Many of the 10 minor urinary components,
representing 3-5% of the dose, may be products of
cleavage of the ether linkage. Unchanged 2-ethoxy-
ethanol was not detecled in the urine, The 0.2 to 0.4% of
the administered '*C collected on charcoal was not
further characterized and may represent unchanged
2-ethoxyethanol expired via the lung.

Previous studies of ethylene glycol monoalkyl ethers
have noted “CO, in the expired breath of rats, but no
conclusions were drawn regarding possible cleavage of
the ether bond. Miller and his co-workers (11) found
that 12% of administered radicactivity was eliminated
as CO0, in 48 hr using Z2-methoxyethanol {ethanol-
1,2-"C]. After administration of isopropoxyethanol
[ethanol-1,2-"C], Hutson and Pickering (14) recovered
16% as '"CO, in 96 hr. Sinece, in both studies, the
terminal carbon was radiolabeled, *CO, production
involving this portion of the molecule eould not be ruled
out. Biological cleavage of the carbon-oxygen bond in
diethyl ether, however, has been reported in the rat (22),
rabbit (23), mouse (24) and man (25,26). In the present
study, cleavage of the ethoxy-labeled compound re-
sulted in the elimination of 11.7% of the dose as *CO..
However, only 4.6% of the administered ethanol-labeled
compound was eliminated as 2CQ,. These results show
that the ether linkage of 2-ethoxyethanol was eleaved to
the extent of at least 11.7% in the rat.

Although testicular damage has been reported in the
rat following administration of certain of the ethylene
glycol monoalkyl ethers (7,9), accumulation of the
compounds or their metabolites in the testes does not

appear likely. Milier et al. (20), studying radiolabeled
2-methoxyethanol, found only 0.13% of the orally admin-
istered C in the testes after 48 hr. In addition, these
investigators noted that the amount of C in the testes
was low in comparison with that in the blood, indicating
a lack of accumulation. In the present study, the level of
"C in the testes was highest at 2 hr after the administra-
tion of 2-ethoxyethanol {ethanol-1,2-1*C] and decreased
rapidly thereafter. The only radicactive compound de-
tected in that tissue was ethoxyacetic acid. These
results are consistent with the findings of Miller et al.
(11) for methoxyacetie acid and suggest that the acid
metabolites may he the activating agents for the testicu-
lar changes resulting from exposure to the ethylene
glyeol monoalkyl ethers,

Mention of company or product names is not to be considered an
endorsement by the National Institute for QOccupational Safety and
Health.
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